Report Customer
v. 2.0 Mystiko

Smart Contract Audit

Solidity and ZoKrates

15th March 2023 {,\ CABIEI(g
onsultin

Contents

1 Changelog
Introduction
Project scope
Methodology
Our findings

o a A~ W N

Maijor Issues

CVF-1. FIXED . . e e e e e e e e
CVF-8. FIXED . . . e e e e e
CVF-9. FIXED . . o e e e e e e e
CVF-10. FIXED e e e e e e e e
CVF-11. FIXED . . . e e e e e e e e e e s e

7 Minor Issues
CVF-12. INFO . . o e e e s e
CVF-13. INFO . . . o e e e e e
CVF-14. INFO . . . o e e e e e e e e e
CVF-15. INFO . . . o e e
CVF-16. INFO . . . o e e e
CVF-17. INFO . . . e e e e e e
CVF-18. INFO . . . o e e e e e
CVF-19. INFO . . . o e e e
CVF-20. INFO e e
CVF-21. INFO . . . e e e
CVF-22. FIXED . . o o e e
CVF-23. INFO . . . o e e
CVF-24. INFO e e e e e e
CVF-25. INFO e e
CVF-26. INFO e
CVF-27. FIXED . . o o e
CVF-28. FIXED . . . o e
CVF-29. FIXED . . . o e e e e e e
CVF-30. FIXED . . . o e e
CVF-31. FIXED . . . o o e e e e
CVF-32. FIXED . . o o e e
CVF-33. FIXED . . o o e e
CVF-34. INFO e e
CVF-35. FIXED . . o o e e
CVF-36. INFO e

1 Changelog

I S

06.03.23 A. Zveryanskaya Initial Draft
0.2 06.03.23 A. Zveryanskaya Minor revision
1.0 06.03.23 A. Zveryanskaya Release
11 15.03.23 A. Zveryanskaya CFV-11 typo fixed
2.0 15.03.23 A. Zveryanskaya Release

ABDK 3

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting
(Mikhail Vladimirov and Dmitry Khovratovich) at the customer request. The audit goal is
a general review of the contract and circuit structure, critical/major bugs detection and
issuing the general recommendations.

Mystiko.Network is the base layer of web3 that provides both connectivity and
confidentiality to all blockchain data, transactions and applications.

ABDK 4

3 Project scope

We were asked to review:

* New functionality as a diff to the code

o After-audit fixes

Solidity files:

core/commitment/

CommitmentPool
Main.sol

core/deposit/base/

MystikoV2Loop.sol

core/deposit/loop/

MystikoV2Loop
ERC20.sol

core/rule/

Sanctions.sol

interface/

ICommitmentPool.sol
IVerifier.sol

libs/asset/

AssetPool.sol
MainAssetPool.sol

libs/common/

DataTypes.sol

ABDK

CommitmentPool.sol

MystikoV2LoopMain.sol

IHasher3.sol

ERC20AssetPool.sol

CustomErrors.sol

CommitmentPool
ERC20.sol

IMystikoLoop.sol

IERC20Metadata.sol

https://github.com/mystikonetwork/mystiko-audits/compare/151ff805a9b38d5bb9c775c4d677df8e62b412ec...dd80c2cfce743670f70917aee4f6b84ad18f169f
https://github.com/mystikonetwork/mystiko-audits/commit/f763b0880eb0599d17618b3fa7a0e0bdce3cab18

ZoKrates files:

/
Commitment.zok ECIES.zok JoinSplit.zok
KeccakBatch.zok MerkleTree.zok ws(;zlf;fgfawh
MerkleTreeBuilder.zok MerkleTreeUpdater.zok Ownership.zok
Rollup1.zok Rollup4.zok Rollup16.zok
Rollup64.zok Rollup256.zok SecretSharing.zok
SerialNumber.zok Sha256Batch.zok SignatureHash.zok
Transaction1x0.zok Transaction1x1.zok Transaction1x2.zok
Transaction2x0.zok Transaction2x1.zok Transaction2x2.zok

ABDK

4

Methodology

The methodology is not a strict formal procedure, but rather a selection of methods and
tactics combined differently and tuned for each particular project, depending on the
project structure and technologies used, as well as on client expectations from the audit.

General Code Assessment. The code is reviewed for clarity, consistency, style,
and for whether it follows best code practices applicable to the particular
programming language used. We check indentation, naming convention,
commented code blocks, code duplication, confusing names, confusing, irrelevant,
or missing comments etc. At this phase we also understand overall code structure.

Entity Usage Analysis. Usages of various entities defined in the code are
analysed. This includes both: internal usages from other parts of the code as well
as potential external usages. We check that entities are defined in proper places
as well as their visibility scopes and access levels are relevant. At this phase, we
understand overall system architecture and how different parts of the code are
related to each other.

Access Control Analysis. For those entities, that could be accessed externally,
access control measures are analysed. We check that access control is relevant
and done properly. At this phase, we understand user roles and permissions, as
well as what assets the system ought to protect.

Code Logic Analysis. The code logic of particular functions is analysed for
correctness and efficiency. We check if code actually does what it is supposed to
do, if that algorithms are optimal and correct, and if proper data types are used.
We also make sure that external libraries used in the code are up to date and
relevant to the tasks they solve in the code. At this phase we also understand
data structures used and the purposes they are used for.

We classify issues by the following severity levels:

ABDK

Critical issue directly affects the smart contract and circuit functionality and may
cause a significant loss.

Major issue is either a solid performance problem or a sign of misuse: a slight
code modification or environment change may lead to loss of funds or data.
Sometimes it is an abuse of unclear code behaviour which should be double
checked.

Moderate issue is not an immediate problem, but rather suboptimal performance
in edge cases, an obviously bad code practice, or a situation where the code is
correct only in certain business flows.

Minor issues contain code style, best practices and other recommendations.

5 Our findings

We found 5 major, and a few less important issues. All identified Major issues have been
fixed.

Active Fixed

Major 0 5

Active Fixed

Minor 16 9

Fixed 14 out of 30 issues

ABDK 8

51

57

132

133
134

6 Majorlissues

CVF-1. FIXED

+ Category Suboptimal * Source MystikoV2Loop.sol

Description Currently, min and max amounts could be set separately, but not both at
once. Also, the contract doesn’t allow “minAmount” to exceed “maxAmount”. Thus it
would be problematic to move the min-max amount range in case the new and the old
ranges don't overlap.

Recommendation Consider implementing an ability to set both amounts at once.
Client Comment New function updateDepositAmountLimits.

+if (_minAmount > maxAmount) revert CustomErrors.
< MinAmountGreaterThanMaxAmount() ;

+if (_maxAmount < minAmount) revert CustomErrors.
— MaxAmountLessThanMinAmount () ;

CVF-8. FIXED

o Category Suboptimal » Source JoinSplit.zok

Description This code is executed for each i whereas it should be executed only once.
Recommendation Consider refactoring.
Client Comment Refactoring.

+field[2] auditorPublicKey = [auditorPublicKeyXs[j],
— auditorPublicKeyYs[j]];
+assert(isOnCurve(auditorPublicKey, context));
+assert((auditorPublicKeyXs[j] > HALF FIELD) ==
— auditorPublicKeyXSigns[j]);

ABDK 9

135

368

540

CVF-9. FIXED

+ Category Suboptimal * Source JoinSplit.zok

Description This function every time checks that ‘randomSecretKey’ is a DLOG of ‘ran-
domPublicKey’, thus making I*N total scalar multiplications. This is a huge overhead.

Recommendation Consider refactoring.
Client Comment Refactoring.

+assert(checkEncryption(commitmentShares[i][j], \

CVF-10. FIXED

o Category Unclear behavior e Source CommitmentPool.sol

Description Here zero is silently returned for an invalid auditor index. Such behavior could
hide errors.

Recommendation Consider reverting on invalid indexes.
Client Comment Revert with AuditorindexError.

+return 0;

CVF-11. FIXED

o Category Suboptimal e Source CommitmentPool.sol

Description Emitting events in a loop is usually a bad idea.
Recommendation Consider emitting a single event with array parameter.
Client Comment Emit event EncryptedAuditorNotes with array parameter.

+emit EncryptedAuditorNote(

ABDK 10

20

20

7 Minor lIssues

CVF-12. INFO

o Category Suboptimal e Source Transaction1x0.zok

Recommendation It is unlikely that this array will be compressed by the compiler, so it
can be easier and less error prone to just pass field elements.

Client Comment Leave this as the boolean type, in case Zokrates optimize its compiler
in the future version.

+bool[NUM AUDITORS] auditorPublicKeyXSigns, \

CVF-13. INFO

o Category Suboptimal » Source Transaction1x1.zok

Recommendation It is unlikely that this array will be compressed by the compiler, so it
can be easier and less error prone to just pass field elements.

Client Comment Leave this as the boolean type, in case Zokrates optimize its compiler
in the future version.

+bool randomPublicKeyXSign, \

CVF-14. INFO

o Category Suboptimal e Source Transaction1x2.zok

Recommendation It is unlikely that this array will be compressed by the compiler, so it
can be easier and less error prone to just pass field elements.

Client Comment Leave this as the boolean type, in case Zokrates optimize its compiler
in the future version.

+bool[NUM AUDITORS] auditorPublicKeyXSigns, \

ABDK "

20

21

20

CVF-15. INFO

+ Category Suboptimal * Source Transaction2x0.zok

Recommendation It is unlikely that this array will be compressed by the compiler, so it
can be easier and less error prone to just pass field elements.

Client Comment Leave this as the boolean type, in case Zokrates optimize its compiler
in the future version.

+booL[NUM_AUDITORS] auditorPublicKeyXSigns, \

CVF-16. INFO

« Category Suboptimal * Source Transaction2x1.zok

Recommendation It is unlikely that this array will be compressed by the compiler, so it
can be easier and less error prone to just pass field elements.

Client Comment Leave this as the boolean type, in case Zokrates optimize its compiler
in the future version.

+field[NUM AUDITORS] auditorPublicKeyYs, \

CVF-17. INFO

+ Category Suboptimal * Source Transaction2x2.zok

Recommendation It is unlikely that this array will be compressed by the compiler, so it
can be easier and less error prone to just pass field elements.

Client Comment Leave this as the boolean type, in case Zokrates optimize its compiler
in the future version.

+booL[NUM_AUDITORS] auditorPublicKeyXSigns, \

CVF-18. INFO

+ Category Procedural + Source JoinSplit.zok

Description We didn't review this file.

+import "ecc/edwardsOnCurve" as isOnCurve;

o

ABDK 12

35

46

57

68

80

102

118

121

156

158

CVF-19. INFO

+ Category Suboptimal * Source JoinSplit.zok

Description These functions always return true.
Recommendation Consider returning nothing.

Client Comment To call the function of zok, you need to use a variable to receive the
return value. If the return value is an empty tuple, can’t define the variable type.

+return true;
+return true;
+return true;
+return true;
+return true;

+return true;

CVF-20. INFO

» Category Suboptimal » Source JoinSplit.zok

Recommendation Passing signs is needed only when the points are compressed. Seems
they are not.

Client Comment Passing uncompress key because compressed key may be great than
field.

+bool[N] auditorPublicKeyXSigns, \
+bool randomPublicKeyXSign, \
+field randomPublicKeyY, \

+field[N] auditorPublicKeyYs, \

ABDK 13

A w N -

CVF-21. INFO

+ Category Procedural » Source ECIES.zok

Description We did not review these files

+from "ecc/babyjubjubParams" import BabyJubJubParams;
+import "ecc/edwardsScalarMult" as scalarMult;
+import "hashes/poseidon/poseidon" as poseidon;
+import "utils/pack/bool/unpack256" as unpack256;

CVF-22. FIXED

o Category Bad naming ¢ Source ECIES.zok

Description Name is bad as the value is not shared: it is an ephemeral scalar in the
DiffieHellman protocol.

Recommendation Consider renaming.
Client Comment Change commonSecretKey to ephemeralScalar.

+field commonSecretKey, \

CVF-23. INFO

+ Category Suboptimal * Source ECIES.zok

Description This check looks weird.
Recommendation Consider returning the check result or returning nothing.

Client Comment To call the function of zok, you need to use a variable to receive the
return value. If the return value is an empty tuple, can’t define the variable type.

+assert(encryptedMsg == expectedEncryptedMsq);
+return true;

ABDK 14

a b~ w0 N =

89

CVF-24. INFO

+ Category Procedural * Source MerkleTreeUpdater.zok

Description We didn’t review this file.

+import "utils/pack/bool/unpack.zok" as unpack;

CVF-25. INFO

« Category Procedural » Source KeccakBatch.zok

Description We didn’t review these files.

+import "hashes/keccak/256bit.zok" as keccak;

+import "utils/casts/u64 from bits.zok" as u64 from bits;
+import "utils/casts/u64 to bits.zok" as u64 to bits;
+import "utils/pack/bool/unpack256.zok" as unpack256;
+import "utils/pack/bool/pack256" as pack256;

CVF-26. INFO

+ Category Procedural » Source DataTypes.sol

Recommendation Consider specifying as “*0.8.0” unless there is something special about
this particular version.

Client Comment Maintain consistency with other files.

+pragma solidity 70.8.7;

CVF-27. FIXED

o Category Suboptimal e Source CommitmentPool.sol

Recommendation The “id” parameter should be indexed.
Client Comment emit event EncryptedAuditorNotes wiht array parameter.

+event EncryptedAuditorNote(uint64 id, uint256 auditorPublicKey,
— uint256 encryptedAuditorNote);

o

ABDK 15

92

328

367

528

CVF-28. FIXED

+ Category Bad naming e Source CommitmentPool.sol

Recommendation Events are usually named via nouns, such as “AuditorPublicKey”.
Client Comment Change name to AuditorPublicKey.

+event AuditorPublicKeyChanged(uint256 indexed index, uint256
— publicKey);

CVF-29. FIXED

o Category Suboptimal e Source CommitmentPool.sol

Recommendation This condition could be simplified as “_index >= auditorCount”.
Client Comment do “_index >= auditorCount” check

+if (_index + 1 > auditorCount) revert CustomErrors.
< AuditorIndexError();

+if (_index + 1 > auditorCount) {

CVF-30. FIXED

» Category Procedural e Source CommitmentPool.sol

Description The expression “previousindex + 2” is calculated on every loop iteration.
Recommendation Consider calculating once before the loop.
Client Comment Refactoring.

+inputs[previousIndex + 2 + i] = unpackedAuditorPublicKey.xSign;

ABDK 16

CVF-31. FIXED

+ Category Procedural e Source CommitmentPool.sol

Description The expression “previousindex + 2 + auditorCount” is calculated on every
loop iteration.

Recommendation Consider calculating once before the loop.
Client Comment Refactoring.

529 +inputs[previousIndex + 2 + auditorCount + i] =
— unpackedAuditorPublicKey.y;

CVF-32. FIXED

+ Category Procedural ¢ Source CommitmentPool.sol

Description The expression “previousindex + 2 + 2 * auditorCount” is calculated on every
loop iteration.

Recommendation Consider calculating once before the loop.
Client Comment Refactoring.

532 +inputs[previousIndex + 2 + 2 * auditorCount + i] = request.
— encryptedAuditorNotes[i];

CVF-33. FIXED

o Category Bad naming » Source Ownership.zok

Description Here ‘pk’ is the x-coordinate of some point.
Recommendation Consider renaming.
Client Comment Change pk to publicKeyX.
5 +def main(field pk, field sk, BabyJubJubParams context) -> bool {

ABDK 17

CVF-34. INFO

+ Category Procedural » Source SecretSharing.zok

Description We didn’t review this file.

1 +import "utils/casts/u32 to field" as u32 to field;

CVF-35. FIXED

« Category Procedural e Source SecretSharing.zok

Description The expression “u32_to_field(i + 1)” is calculated on every loop iteration.
Recommendation Consider calculating once before the loop.
Client Comment Refactoring.

9 +accum = accum * u32 to field(i + 1) + coefficients[K - 1 - jI;

CVF-36. INFO

o Category Suboptimal » Source SecretSharing.zok

Description The function always returns true.
Recommendation Consider returning nothing.

Client Comment To call the function of zok, you need to use a variable to receive the
return value. If the return value is an empty tuple, can’t define the variable type.

13 +return true;

ABDK 18

ABDK

Consulting

About us

Established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-
authored some widely known blockchain primitives like Poseidon hash function.

The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++,
JavaScript, and other languages.

Contact

X Email @ Website
dmitry@abdkconsulting.com abdk.consulting
W Twitter @ LinkedIn

twitter.com/ABDKconsulting linkedin.com/company/abdk-consulting

https://twitter.com/ABDKconsulting
https://abdk.consulting/
https://linkedin.com/company/abdk-consulting

	Changelog
	Introduction
	Project scope
	Methodology
	Our findings
	Major Issues
	CVF-1. FIXED
	CVF-8. FIXED
	CVF-9. FIXED
	CVF-10. FIXED
	CVF-11. FIXED

	Minor Issues
	CVF-12. INFO
	CVF-13. INFO
	CVF-14. INFO
	CVF-15. INFO
	CVF-16. INFO
	CVF-17. INFO
	CVF-18. INFO
	CVF-19. INFO
	CVF-20. INFO
	CVF-21. INFO
	CVF-22. FIXED
	CVF-23. INFO
	CVF-24. INFO
	CVF-25. INFO
	CVF-26. INFO
	CVF-27. FIXED
	CVF-28. FIXED
	CVF-29. FIXED
	CVF-30. FIXED
	CVF-31. FIXED
	CVF-32. FIXED
	CVF-33. FIXED
	CVF-34. INFO
	CVF-35. FIXED
	CVF-36. INFO

